Implementasi Deep Learning Pada Kematangan Buah Pala Menggunakan Convolutional Neural Network Berbasis Android
DOI:
https://doi.org/10.33506/insect.v10i1.3650Keywords:
Nutmeg, Detection, Deep Learning, Convolutional Neural Network, AndroidAbstract
Nutmeg, also known by its Latin name Myristica Fragrans, is a tree-like plant that is rich in benefits. As a spice, the plant is native to the Maluku islands and has a high value. Therefore, Papuan Nutmeg is referred to as a native and endemic species on the island of Papua. However, the distribution of Papuan Nutmeg is mostly in West Papua, especially Fakfak Regency. Nutmeg farmers can generally assess the ripeness of nutmeg by observing its colour, as this is the simplest method. Although this method is easy, there are several obstacles that make the nutmeg selection process less effective, especially if done manually. In this research, a system is needed that aims to detect nutmeg based on the level of maturity using Convolutional Neural Network (CNN). The dataset used is an image with a total of 600 images, which are grouped into 3 classes. The results of the implementation of deep learning in the detection of nutmeg maturity level carried out in this study using Convolutional Neural Netwok (CNN) with VGG16 architecture can classify the maturity level of nutmeg with an accuracy level of 98% for precission, 98% for recall and 98% for f1-score.
References
Andi Patimang and Aulia Saraswaty, “Agribisnis Pala Di Kabupaten Fakfak Dalam Mendukung Terbentuknya Inkubator Bisnis Politeknik Negeri Fakfak,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 2, no. 1, pp. 32–40, 2022, doi: 10.55606/juitik.v2i1.204.
M. A’mun, “Karakteristik Minyak Dan Isolasi Trimiristin Biji Pala Papua (Myristica argentea) Characteristics of Oil and Trimyristin Isolation of Papua Nutmeg Seeds (Myristica argentea)).”
BPS Kabupaten Fakfak, Kabupaten Fakfak Dalam Angka In Figures Fakfak Regency. Fakfak, 2021. Accessed: Aug. 13, 2024. [Online].
S. Umagapi, “No Title,” Mengidentifikasi Kematangan Buah Pala Berdasarkan Ciri Tekstur Menggunakan Metode Backpropagation, p. 6, 2021.
A. La Lengo, A. Ibrahim, and M. Hamid, “Penerapan Metode K-Nearest Neighbor Untuk Mengklasifikasikan Kualitas Biji Pala Berdasarkan Fitur Bentuk Dan Tekstur Application Of The K-Nearest Neighbor Method For Classifying The Quality Of Nuts Based On Form And Texture Features.”
B. Yanto et al., “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” vol. 6, no. 2, p. 2021.
Ananda Tariska P, Widyasari Sherina Viola, Muttaqin Muhammad Ihsan, and Stefanie Arnisa, “IDENTIFIKASI TINGKAT KEMATANGAN BUAH PEPAYA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” 2023. Accessed: Aug. 14, 2024. [Online]. Available: https://doi.org/10.36040/jati.v7i3.7137
I. Salamah, S. Humairoh, and S. Soim, “Implementasi Convolutional Neural Network Pada Alat Klasifikasi Kematangan dan Ukuran Buah Nanas Berbasis Android,” vol. 8, no. 2, p. 2023.
F. Risdin, P. Kumar Mondal, and K. Mahmudul Hassan, “Convolutional Neural Networks (CNN) for Detecting Fruit Information Using Machine Learning Techniques,” vol. 22, no. 2, pp. 1–13, doi: 10.9790/0661-2202010113.
Y. Herdiana, “Penerapan Machine Learning Dengan Model Linear Regression Terhadap Analisis Kualitas Hasil Petik the Di Pt. Perkebunan …,” COMPUTING| Jurnal Informatika, vol. 09, pp. 1–9, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rendra Soekarta, Muzakkir Pangri, Maskia Katmas
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.