XceptionNet Based Digital Image Forensics with DFRWS Framework for Deepfake Detection

Authors

  • Muh. Hajar Akbar Akbar Program Studi Sistem Informasi, Universitas Sembilanbelas November Kolaka
  • Jimsan Jimsan Program Studi Sistem Informasi, Universitas Sembilanbelas November Kolaka
  • Yahya Yahya Program Studi Sistem Informasi, Universitas Sembilanbelas November Kolaka
  • Ilcham Ilcham Program Studi Sistem Informasi, Universitas Sembilanbelas November Kolaka
  • Nasrullah Nasrullah Program Studi Sistem Informasi, Universitas Sembilanbelas November Kolaka

DOI:

https://doi.org/10.33506/insect.v11i2.4996

Keywords:

Deepfake, XceptionNet, Digital Forensics, DFRWS

Abstract

This study presents a novel approach to deepfake detection by integrating the DFRWS (Digital Forensics Research Workshop) framework with a deep learning architecture based on XceptionNet. The rapid advancement of deepfake technology poses a significant threat to digital media authenticity, necessitating robust and reliable detection methods. In this work, we implement a fine-tuned XceptionNet model enhanced with additional regularization techniques, specifically focusing on facial feature analysis. The model is trained on a balanced dataset comprising 2,000 images, equally divided between authentic and deepfake samples. Experimental results demonstrate exceptional performance, achieving an accuracy of 91.25%, precision of 88.73%, recall of 94.50%, and an AUC score of 0.9710. The proposed model shows a significant improvement in detecting subtle manipulation artifacts while maintaining computational efficiency, offering a promising solution for practical deepfake identification in real-world scenarios.

References

[1] A. Saxena et al., “Detecting Deepfakes: A Novel Framework Employing XceptionNet-Based Convolutional Neural Networks,” Trait. du Signal, vol. 40, no. 3, pp. 835–846, 2023, doi: 10.18280/ts.400301.

[2] M. Karaköse, İ. İlhan, H. Yetiş, and S. Ataş, “A New Approach for Deepfake Detection with the Choquet Fuzzy Integral,” Appl. Sci., vol. 14, no. 16, 2024, doi: 10.3390/app14167216.

[3] L. Verdoliva, “Media Forensics and DeepFakes: An Overview,” IEEE J. Sel. Top. Signal Process., vol. 14, no. 5, pp. 910–932, 2020, doi: 10.1109/JSTSP.2020.3002101.

[4] M. Elpeltagy, A. Ismail, M. S. Zaki, and K. Eldahshan, “A Novel Smart Deepfake Video Detection System,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 1, pp. 407–419, 2023, doi: 10.14569/IJACSA.2023.0140144.

[5] D. Gong, Y. J. Kumar, O. S. G. Z. Ye, and W. Chi, “DeepfakeNet, an Efficient Deepfake Detection Method,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 201–207, 2021, doi: 10.14569/IJACSA.2021.0120622.

[6] Z. Guo, G. Yang, J. Chen, and X. Sun, “Fake face detection via adaptive manipulation traces extraction network,” Comput. Vis. Image Underst., vol. 204, no. January, p. 103170, 2021, doi: 10.1016/j.cviu.2021.103170.

[7] R. Caldelli, L. Galteri, I. Amerini, and A. Del Bimbo, “Optical Flow based CNN for detection of unlearnt deepfake manipulations,” Pattern Recognit. Lett., vol. 146, pp. 31–37, 2021, doi: 10.1016/j.patrec.2021.03.005.

[8] A. Kohli and A. Gupta, “Detecting DeepFake, FaceSwap and Face2Face facial forgeries using frequency CNN,” Multimed. Tools Appl., vol. 80, no. 12, pp. 18461–18478, 2021, doi: 10.1007/s11042-020-10420-8.

[9] J. Liu, K. Zhu, W. Lu, X. Luo, and X. Zhao, “A lightweight 3D convolutional neural network for deepfake detection,” Int. J. Intell. Syst., vol. 36, no. 9, pp. 4990–5004, 2021, doi: 10.1002/int.22499.

[10] Y. Patel et al., “An Improved Dense CNN Architecture for Deepfake Image Detection,” IEEE Access, vol. 11, no. January, pp. 22081–22095, 2023, doi: 10.1109/ACCESS.2023.3251417.

[11] O. A. H. H. Al-Dulaimi and S. Kurnaz, “A Hybrid CNN-LSTM Approach for Precision Deepfake Image Detection Based on Transfer Learning,” Electronics, vol. 13, no. 9, 2024, doi: 10.3390/electronics13091662.

[12] A. Chintha, A. Rao, S. Sohrawardi, K. Bhatt, M. Wright, and R. Ptucha, “Leveraging edges and optical flow on faces for deepfake detection,” IJCB 2020 - IEEE/IAPR Int. Jt. Conf. Biometrics, 2020, doi: 10.1109/IJCB48548.2020.9304936.

[13] A. Saxena et al., “Detecting Deepfakes: A Novel Framework Employing XceptionNet-Based Convolutional Neural Networks,” Trait. du Signal, vol. 40, no. 3, pp. 835–846, 2023, doi: 10.18280/ts.400301.

[14] T. M. Jawad Abbas and A. S. Abdulmajeed, “Identifying digital forensic frameworks based on processes models,” Iraqi J. Sci., vol. 2021, pp. 249–258, 2021, doi: 10.24996/ijs.2021.SI.1.35.

[15] Pollitt MM. 2007. An ad hoc review of digital forensic models. Conference: Second .IEEE International Workshop on Systematic Approaches to Digital Forensic Engineering, SADFE 2007, 12-Seattle, Washington, USA, April 10, 2007.

Published

30-10-2025

How to Cite

Akbar, M. H. A., Jimsan, J., Yahya, Y., Ilcham, I., & Nasrullah, N. (2025). XceptionNet Based Digital Image Forensics with DFRWS Framework for Deepfake Detection. Insect (Informatics and Security): Jurnal Teknik Informatika, 11(2), 221–228. https://doi.org/10.33506/insect.v11i2.4996

Similar Articles

You may also start an advanced similarity search for this article.