Deep Learning Untuk Klasifikasi Motif Batik Papua Menggunakan EfficientNet dan Trasnfer Learning
DOI:
https://doi.org/10.33506/insect.v8i1.1865Keywords:
deep learning, batik papua, transfer learning, data augmentationAbstract
\Merupakan warisan budaya Indonesia, batik Papua hadir dengan ragam motif, selain dikenal dengan motif daerah asal pembuatannya, motif corak budaya serta corak flora dan faunapun mewarnai keragaman motif batik dari Papua. Kemampuan untuk mengenal motif – motif tersebut, menjadi tantangan untuk menemukan model dalam mengklasifikasi motif batik dari Papua untuk melestarikannya. Penelitian ini menggunakan deep learning dalam mengklasifikasi motif batik dari Papua dengan melakukan transfer learning menggunakan arsitektur efficienNet dengan transfer learning dan teknik agumentasi data Hasil pengujian menggunakan empat kelas dataset memperoleh dengan arsitektur EfficientNet-B2 dengan fine tuning memberikan akurasi 72% dan ditambahkan teknik augmentasi tertinggi dengan menggunakan teknik ColorJitter dan Contrast dengan hasil 90%.
References
V. Marthen and I. Mambraku, “Motif Ragam Hias Batik Pada Ruang Publik,” 2014.
A. P. Azhari and P. Sulistiyawati, “Perancangan Motif Batik Papua Dengan Karakter Burung,” Citrakara, vol. 01, pp. 1–12, 2019.
I. Nurhaida, R. Manurung, and A. M. Arymurthy, “Performance comparison analysis features extraction methods for Batik recognition,” 2012 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2012 - Proc., pp. 207–212, 2012.
A. E. Minarno, A. S. Maulani, A. Kurniawardhani, F. Bimantoro, and N. Suciati, “Comparison of methods for Batik classification using multi texton histogram,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 3, pp. 1358–1366, 2018, doi: 10.12928/TELKOMNIKA.v16i3.7376.
A. A. Kasim, R. Wardoyo, and A. Harjoko, “Batik classification with artificial neural network based ontexture-shape feature of main ornament,” Int. J. Intell. Syst. Appl., vol. 9, no. 6, pp. 55–65, 2017, doi: 10.5815/ijisa.2017.06.06.
A. E. Minarno, “Klasifikasi Jenis Batik Menggunakan Algoritma Convolutional Neural Network,” J. Repos., vol. 3, no. 2, pp. 199–206, 2021, doi: 10.22219/repositor.v3i2.1201.
A. Y. Wicaksono, N. Suciati, C. Fatichah, K. Uchimura, and G. Koutaki, “Modified Convolutional Neural Network Architecture for Batik Motif Image Classification,” IPTEK J. Sci., vol. 2, no. 2, pp. 26–30, 2017, doi: 10.12962/j23378530.v2i2.a2846.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
I. M. A. Agastya and A. Setyanto, “Classification of Indonesian batik using deep learning techniques and data augmentation,” Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018, pp. 27–31, 2018, doi: 10.1109/ICITISEE.2018.8720990.
C. U. Khasanah, E. Utami, and S. Raharjo, “Implementation of Data Augmentation Using Convolutional Neural Network for Batik Classification,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, pp. 20–24, 2020, doi: 10.1109/CITSM50537.2020.9268890.
B. S. Negara, E. Satria, S. Sanjaya, and D. R. Dwi Santoso, “ResNet-50 for Classifying Indonesian Batik with Data Augmentation,” 2021 Int. Congr. Adv. Technol. Eng. ICOTEN 2021, pp. 7–10, 2021, doi: 10.1109/ICOTEN52080.2021.9493488.
H. C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285–1298, 2016, doi: 10.1109/TMI.2016.2528162.
D. M. Wonohadidjojo, “Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih,” Ultim. J. Tek. Inform., vol. 13, no. 1, pp. 51–57, 2021, doi: 10.31937/ti.v13i1.2040.
F. A. Putra et al., “Classification of Batik Authenticity Using Convolutional Neural Network Algorithm with Transfer Learning Method,” pp. 1–6, 2021, doi: 10.1109/icic54025.2021.9632937.
T. Mingxing and V. Le Quoc, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks Mingxing,” Can. J. Emerg. Med., vol. 15, no. 3, p. 190, 2013, doi: 10.2310/8000.2013.131108.
A. Zhaputri, M. Hayaty, and A. D. Laksito, “Classification of Brain Tumour Mri Images Using Efficient Network,” ICOIACT 2021 - 4th Int. Conf. Inf. Commun. Technol. Role AI Heal. Soc. Revolut. Turbul. Era, pp. 108–113, 2021, doi: 10.1109/ICOIACT53268.2021.9563922.
A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv, 2017.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
F. Zhuang et al., “A comprehensive survey on transfer learning,” arXiv, 2019.
S. F. Tumewu, D. H. Setiabud, and I. Sugiarto, “Klasifikasi Motif Batik menggunakan metode Deep Convolutional Neural Network dengan Data Augmentation,” J. Infra, vol. 8, no. 2, pp. 189–194, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Suhardi Aras, Arief Setyanto, Rismayani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.