Leaf Disease Detection in Chili Plants Using GLCM and HSV Combination with SVM Classification
DOI:
https://doi.org/10.33506/insect.v11i2.4820Keywords:
Daun Cabai, Deteksi Penyakit, GLCM, HSV, Support Vector Machine (SVM)Abstract
Chili pepper is one of the high-value horticultural commodities in Indonesia. However, this plant is highly susceptible to various leaf diseases such as yellow virus, leaf spots, leaf curl, nutrient deficiency, and whitefly infestation. Manual disease detection is often inaccurate and time-consuming, necessitating an automated solution that is more efficient and effective. This study aims to detect chili leaf diseases using texture and color features extracted from leaf images. This approach enables farmers to easily identify the type of disease affecting chili plants, allowing for faster and more precise control measures. The research utilizes 1,150 chili leaf images divided into five disease categories—yellow virus, leaf spot, leaf curl, nutrient deficiency, and whitefly—each consisting of 230 images (184 training and 46 testing data). Feature extraction is performed on color features using the Hue, Saturation, Value (HSV) color space and on texture features using the Gray-Level Co-occurrence Matrix (GLCM) method. For classification, the Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel is employed. Parameter testing of C (1, 5, and 10) and Gamma (0.1, 0.01, 0.001, 0.0001, and 0.00001) shows that the best performance is achieved at angles 0° and 135°, with C=10 and γ=0.1, yielding a classification accuracy of 91.30%. These results indicate that the combination of GLCM and HSV features, along with optimal RBF kernel parameter tuning, effectively enhances classification accuracy.
References
[1] N. Hariyani et al., “Potensi dan Tantangan Pengembangan Sayuran Organik dalam Mendukung Ketahanan Pangan Berkelanjutan Potential and Challenges of Organic Vegetable Development in Supporting Sustainable Food Security,” 2025.
[2] R. Sianturi and R. Sianturi, “Faktor-Faktor Penentu Adopsi Inovasi Pada Usahatani Cabai Merah (Capsicum Annum.L.),” Jurnal Agriuma, vol. 6, no. 1, pp. 26–35, Apr. 2024, doi: 10.31289/agri.v6i1.11731.
[3] A. Bahruddin et al., “Pemanfaatan Dan Prospek Budidaya Cabe Jamu Di Dusun Nung Malaka Desa Daleman Kecamatan Galis Kabupaten Bangkalan,” 2021.
[4] T. S. Wahyuni, R. Satriani, and A. N. Mandamdari, “Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis Pengaruh Fluktuasi Harga Cabai Rawit Merah Terhadap Inflasi di Kabupaten Banyumas The Effect of Fluctuations in Red Cayenne Pepper Prices on Inflation in Banyumas Regency,” vol. 10, no. 2, pp. 1866–1877, Jul. 2024, [Online]. Available: www.antara.jatengnews,
[5] F. Zikra, K. Usman, and R. Patmasari, “Deteksi Penyakit Cabai Berdasarkan Citra Daun Menggunakan Metode Gray Level Co-Occurence Matrix Dan Support Vector Machine”.
[6] S. S. Zuain, H. Fitriyah, and R. Maulana, “Deteksi Penyakit pada Daun Cabai berdasarkan Fitur HSV dan GLCM menggunakan Algoritma C4.5 berbasis Raspberry Pi,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
[7] S. F. Nazila, Y. Arman, D. Wahyuni, N. Nurhasanah, and Y. S. Putra, “Deteksi Dini Serangan Hama Penyakit pada Cabai Rawit Menggunakan Metode Image Recognition,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, Aug. 2023, doi: 10.28932/jutisi.v9i2.6342.
[8] S. Adiningsi, B. Pramono, A. M. Sajiah, and R. A. Saputra, “Identifikasi Kualitas Ikan Cakalang Segar Berbasis Citra Mata Menggunakan Metode Support Vector Machine (Svm) Dengan Fungsi Kernel Radial Basis Function,” 2025.
[9] Z. N. Ali Khan, “Deep Learning-Based CNN Approach for Disease Detection in Chili Plant Leaves.” [Online]. Available: http://www.ijert.org
[10] R. Adawiyah and D. I. Mulyana, “Informasi (Jurnal Informatika dan Sistem Informasi) Optimasi Deteksi Penyakit Kulit Menggunakan Metode Support Vector Machine (SVM) dan Gray Level Co-occurrence Matrix (GLCM).”
[11] H. P. Hadi and E. H. Rachmawanto, “JIP (Jurnal Informatika Polinema) Ekstraksi Fitur Warna Dan Glcm Pada Algoritma Knn Untuk Klasifikasi Kematangan Rambutan”.
[12] H. Technology and A. Nexus, “Implementasi Gray Level Co-Occurrence Matrix (GLCM) Untuk Mendeteksi Penyakit Daun Pada Tanaman Holtikultura,” 2025. [Online]. Available: https://journal.ummat.ac.id/index.php/tcs
[13] H. A. Rabbani, M. A. Rahman, and B. Rahayudi, “Perbandingan Ruang Warna RGB dan HSV dalam Klasifikasi Kematangan Biji Kopi,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
[14] A. Puteri Bilqis Salsabila et al., “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia Journal (TMJ), doi: 10.33050/tmj.v6i1.
[15] P. Daun, K. Berbasis, F. Glcm, R. Marlita, and D. Mustofa, “Implementasi Support Vector Machine Pada Klasifikasi,” JIKA : Jurnal Ilmu Komputer dan Aplikasinya, vol. 1, no. 1, pp. 6–11, 2025, doi: 10.5281/zenodo.14885356.
[16] D. Margarita, H. Maulana, and E. P. Mandyartha, “Klasifikasi Penyakit Daun Padi Menggunakan Support Vector Machine Berdasarkan Fitur Mendalam (Deep Feature),” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2256–2270, Nov. 2024, doi: 10.29100/jipi.v9i4.5634.
[17] Nana Apriani and Supatman, “5860-Article Text-21097-1-10-20250620,” Jurnal Informatika Teknologi dan Sains (JINTEKS), vol. 7, no. Vol. 7, No. 2, p. 895, May 2025.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurmadinah Nurmadinah, Farid Wajidi, Nurhikma Arifin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.