ANALISIS RESIKO GETARAN TANAH AKIBAT PENGEBORAN RENCANA PONDASI JEMBATAN YANG BERSIMPANGAN DENGAN JALUR PIPA GAS
DOI:
https://doi.org/10.33506/rb.v10i2.3329Keywords:
Analisis resiko, getaran, jembatan, likuifaksi, pipa gasAbstract
Rencana pembangunan perumahan di Desa Cihuni, Kecamatan Pagedangan, Kabupaten Tangerang membutuhkan akses jalan yang melintasi jalur pipa milik PT. Pertamina Gas yang tertanam di bawah tanah. Pelaksanaan konstruksi di atas pipa gas tentunya berpotensi membahayakan keamanan pipa gas. Untuk mengetahui potensi resiko akibat getaran yang diakibatkan oleh pengeboran pondasi pada pipa gas yang tertanam dan mengetahui tindakan pencegahan dan atau perlindungan khusus apabila risiko pada pipa gas berada pada level yang tidak dapat diterima sesuai dengan klasifikasi resiko dilakukanlah penelitian ini. Hasil analisis menunjukkan bahwa penggunanaan mesin bor yang bertenaga 133kW dengan frekuensi putaran 36 rpm berpotensi menimbulkan getaran, PPV sebesar 33.15 mm/det saat mengenai pipa gas, hal ini melampaui kriteria maksimum yang diijinkan yaitu 30 mm/det, tentunya berpotensi merusak pipa. Sementara hasil analisis menunjukkan getaran akibat pengeboran tidak berpotensi menyebabkan likuifaksi dengan faktor keamanan sebesar 15. Untuk memitigasi hal tersebut alternatif yang dapat dilakukan adalah membatasi kecepatan putaran mesin bor sampai dengan 29.5 rpm atau menurunkan dasar pile cap sedalam 2.6 m, dan memasang accelerometer untuk memonitor besaran getaran dan menurunkan rpm atau menghentikan kegiatan konstruksi saat terindikasi ppv mendekati 30 mm/det.
References
Abdoul Nasser, A. H., Ndalila, P. D., Mawugbe, E. A., Emmanuel Kouame, M., Arthur Paterne, M., & Li, Y. (2021). Mitigation of Risks Associated with Gas Pipeline Failure by Using Quantitative Risk Management Approach: A Descriptive Study on Gas Industry. Journal of Marine Science and Engineering, 9(10), 1098. https://doi.org/10.3390/jmse9101098
ArcelorMittal. (2008). Piling Handbook (8th ed.). ArcelorMittal Commercial RPS.
ASTM. (2017). ASTM D4318-17e1, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
ASTM. (2018). D2573M-18, Standard Test Method for Field Vane Shear Test in Saturated Fine-Grained Soils.
ASTM. (2020). ASTM D4767-20, Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils.
ASTM. (2023). ASTM D2850-23, Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils.
Attewell, P. B., & Farmer, I. W. (1973). Attenuation of Ground Vibration from Pile Driving. Ground Engineering Journal, 3(7), 26–29.
Attewell, P. B., Selby, A. R., & O’Donnell, L. (1992). Estimation of ground vibration from driven piling based on statistical analyses of recorded data. Geotechnical and Geological Engineering, 10(1), 41–59. https://doi.org/10.1007/BF00881970
A’yun, S. F. (2018). Analisis risiko pada pipa gas terhadap rencana pembangunan flyover Teluk Lamong. Institut Teknologi Sepuluh Nopember.
Badida, P., Balasubramaniam, Y., & Jayaprakash, J. (2019). Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. Journal of Natural Gas Science and Engineering, 66, 284–292. https://doi.org/10.1016/j.jngse.2019.04.010
Bai, Y., & Dong Xu, Z. (2019). Dynamics of Structures (1st ed.). Wiley. https://doi.org/10.1002/9781119605775
BSI. (1992). BS 5228-4-1992; Noise Control On Construction and Open Sites. Part 4, Code of practice for noise and vibration control applicable to piling operations. BSI.
BSI. (2014). BS 5228-2:2009+A1:2014 Code of practice for noise and vibration control on construction and open sites - Vibration. BSI.
BSN. (1998). SNI 03-4804-1998, Metode pengujian berat isi dan rongga udara dalam agregat (439/BSN-I/HK/08/1998). Badan Standarisasi Nasional.
BSN. (2008). SNI 3423:2008, Cara uji analisis ukuran butir tanah. Badan Standarisasi Nasional.
BSN. (2018). SNI 2813:2018, Cara Uji Kuat Geser Langsung Tanah Terkonsolidasi dan Terdrainase. Badan Standarisasi Nasional.
BSN. (2019). SNI 4153:2019, Metode uji penetrasi standar (SPT) dan pengambilan contoh tanah dengan tabung belah (ASTM D 1586-11, IDT) (458/KEP/BSN/10/2019). Badan Standarisasi Nasional.
CEN. (1998). European Committee for Standardization. European Prestandard ENV 1993-5, Eurocode 3: Design of steel structures - Part 5: Piling. CEN.
Colaço, A., Ferreira, M. A., & Costa, P. A. (2022). Empirical, Experimental and Numerical Prediction of Ground-Borne Vibrations Induced by Impact Pile Driving. Vibration, 5(1), 80–95. https://doi.org/10.3390/vibration5010004
Crabb, G. I., Hiller, D., & Wilson, P. E. (1998). Measurement and prediction of ground-borne vibration due to construction operations. https://api.semanticscholar.org/CorpusID:106891691
DIN. (2016). DIN 4150-3 Vibrations in buildings - Part 3: Effects on structures. Deutsches Institut Fur Normung E.V. (German National Standard).
Faculty of Societal Safety Sciences, K. U. (Ed.). (2018). The Fukushima and Tohoku Disaster. Elsevier. https://doi.org/10.1016/C2016-0-04143-8
Hamidi, A., Farshi Homayoun Rooz, A., & Pourjenabi, M. (2018). Allowable Distance from Impact Pile Driving to Prevent Structural Damage Considering Limits in Different Standards. Practice Periodical on Structural Design and Construction, 23(1). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000354
Hamidi, A., Farshi Homayoun Rooz, A., & Pourjenabi, M. (2019). Closure to “Allowable Distance from Impact Pile Driving to Prevent Structural Damage Considering Limits in Different Standards” by Amir Hamidi, Abtin Farshi Homayoun Rooz, and Majid Pourjenabi. Practice Periodical on Structural Design and Construction, 24(1). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000403
Idriss, I. M., & Boulanger, R. W. (2008). Soil Liquefaction During Earthquakes. Earthquake engineering Research Institute (EERI).
Khoeri, H., Badaruddin, B., & Isvara, W. (2024). Asesmen Geoteknik Keretakan Cold Water Pipe (CWP) Pada Pembangkit Listrik Tenaga Uap dan Rekomendasi Perbaikan. Prosiding Seminar Nasional Teknik Sipil UMS, 144–151.
Khoeri, H., Pradana, R., Isvara, W., & Irwanto, R. (2024). Geotechnical Stability Assessment and Soil Improvement Recommendations using Soil Grouting and Drainage Tunnels (Case study: Retaining wall displacement at a transmission tower site). BENTANG: Jurnal Teoritis Dan Terapan Bidang Rekayasa Sipil, 12(2).
Massarsch, K. R., & Westerberg, E. (1995). The active design concept applied to soil compaction. Bengt B. Broms Symposium in Geotechnical Engineering, 262–276.
PT. Pertamina Gas, & PT. Mikasa Pama Internastional. (2022). Berita Acara Survey Bersama Identifikasi Lokasi Crossing antara PT Pertamina Gas yang diwakili oleh tim dari Direktorat Teknik & Operasi/ OWJA/ Distrik Bitung dan PT Mikasa Pama Internastional.
Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. https://doi.org/10.1061/JSFEAQ.0001662
Seed, H. B., & Idriss, I. M. (1982). Ground Motion and Soil Liquefaction During Earthquake. Earthquake Engineering Research Institute Monograph.
Svinkin, M. R. (2008, August 14). Soil and Structure Vibrations from Construction and Industrial. Sixth International Conference on Case Histories in Geotechnical Engineering. https://scholarsmine.mst.edu/icchgehttps://scholarsmine.mst.edu/icchge/6icchge/session13/8
Wang, W., Shen, K., Wang, B., Dong, C., Khan, F., & Wang, Q. (2017). Failure probability analysis of the urban buried gas pipelines using Bayesian networks. Process Safety and Environmental Protection, 111, 678–686. https://doi.org/10.1016/j.psep.2017.08.040
Whyley, P. J., & Sarsby, R. W. (1992). Ground borne vibration from piling. Journal Ground Engineering.
XCMG. (2021). XR150D CFA Technical Data Sheet. XCMG Foundation Indonesia Service Center.
Yasuhara, K., Murakami, S., & Toyota, N. (1996). Earthquake-Induced Residual Settlements in Soft Soils. Eleventh World Conference in Earthquake Engineering.
Zhang, H., Qin, M., Liao, K., Wang, K., & He, G. (2021). Pipe-soil vibration characteristics of natural gas pipelines during the pigging process. Journal of Natural Gas Science and Engineering, 95, 104148. https://doi.org/https://doi.org/10.1016/j.jngse.2021.104148
Zhang, H., Zhang, S., Liu, S., & Wang, Y. (2017). Collisional vibration of PIGs (pipeline inspection gauges) passing through girth welds in pipelines. Journal of Natural Gas Science and Engineering, 37, 15–28. https://doi.org/https://doi.org/10.1016/j.jngse.2016.11.035
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Heri Khoeri, Wisnu Isvara
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.