Implementasi Deep Learning Pada Kematangan Buah Pala Menggunakan Convolutional Neural Network Berbasis Android

Authors

  • Rendra Soekarta Program Studi Teknik Informatika, Universitas Muhammadiyah Sorong
  • Muzakkir Pangri Teknik Informatika
  • Maskia Katmas Program Studi Teknik Informatika, Universitas Muhammadiyah Sorong

DOI:

https://doi.org/10.33506/insect.v10i1.3650

Keywords:

Nutmeg, Detection, Deep Learning, Convolutional Neural Network, Android

Abstract

Nutmeg, also known by its Latin name Myristica Fragrans, is a tree-like plant that is rich in benefits. As a spice, the plant is native to the Maluku islands and has a high value. Therefore, Papuan Nutmeg is referred to as a native and endemic species on the island of Papua. However, the distribution of Papuan Nutmeg is mostly in West Papua, especially Fakfak Regency. Nutmeg farmers can generally assess the ripeness of nutmeg by observing its colour, as this is the simplest method. Although this method is easy, there are several obstacles that make the nutmeg selection process less effective, especially if done manually. In this research, a system is needed that aims to detect nutmeg based on the level of maturity using Convolutional Neural Network (CNN). The dataset used is an image with a total of 600 images, which are grouped into 3 classes. The results of the implementation of deep learning in the detection of nutmeg maturity level carried out in this study using Convolutional Neural Netwok (CNN) with VGG16 architecture can classify the maturity level of nutmeg with an accuracy level of 98% for precission, 98% for recall and 98% for f1-score.

References

Andi Patimang and Aulia Saraswaty, “Agribisnis Pala Di Kabupaten Fakfak Dalam Mendukung Terbentuknya Inkubator Bisnis Politeknik Negeri Fakfak,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 2, no. 1, pp. 32–40, 2022, doi: 10.55606/juitik.v2i1.204.

M. A’mun, “Karakteristik Minyak Dan Isolasi Trimiristin Biji Pala Papua (Myristica argentea) Characteristics of Oil and Trimyristin Isolation of Papua Nutmeg Seeds (Myristica argentea)).”

BPS Kabupaten Fakfak, Kabupaten Fakfak Dalam Angka In Figures Fakfak Regency. Fakfak, 2021. Accessed: Aug. 13, 2024. [Online].

S. Umagapi, “No Title,” Mengidentifikasi Kematangan Buah Pala Berdasarkan Ciri Tekstur Menggunakan Metode Backpropagation, p. 6, 2021.

A. La Lengo, A. Ibrahim, and M. Hamid, “Penerapan Metode K-Nearest Neighbor Untuk Mengklasifikasikan Kualitas Biji Pala Berdasarkan Fitur Bentuk Dan Tekstur Application Of The K-Nearest Neighbor Method For Classifying The Quality Of Nuts Based On Form And Texture Features.”

B. Yanto et al., “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” vol. 6, no. 2, p. 2021.

Ananda Tariska P, Widyasari Sherina Viola, Muttaqin Muhammad Ihsan, and Stefanie Arnisa, “IDENTIFIKASI TINGKAT KEMATANGAN BUAH PEPAYA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” 2023. Accessed: Aug. 14, 2024. [Online]. Available: https://doi.org/10.36040/jati.v7i3.7137

I. Salamah, S. Humairoh, and S. Soim, “Implementasi Convolutional Neural Network Pada Alat Klasifikasi Kematangan dan Ukuran Buah Nanas Berbasis Android,” vol. 8, no. 2, p. 2023.

F. Risdin, P. Kumar Mondal, and K. Mahmudul Hassan, “Convolutional Neural Networks (CNN) for Detecting Fruit Information Using Machine Learning Techniques,” vol. 22, no. 2, pp. 1–13, doi: 10.9790/0661-2202010113.

Y. Herdiana, “Penerapan Machine Learning Dengan Model Linear Regression Terhadap Analisis Kualitas Hasil Petik the Di Pt. Perkebunan …,” COMPUTING| Jurnal Informatika, vol. 09, pp. 1–9, 2022.

Published

2024-03-31

How to Cite

Soekarta, R., Pangri, M., & Katmas, M. (2024). Implementasi Deep Learning Pada Kematangan Buah Pala Menggunakan Convolutional Neural Network Berbasis Android. Insect (Informatics and Security): Jurnal Teknik Informatika, 10(1), 30–38. https://doi.org/10.33506/insect.v10i1.3650

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.